Log in

Immunosuppression for Solid Organ and Bone Marrow Transplantation

Harvard-MIT Division of Health Sciences and Technology 
HST.151: Principles of Pharmocology 
Instructor: Prof. Thomas Spitzer 
Spitzer/HST-151 1 
Immunosuppression for Solid Organ and Bone Marrow Transplantation 
Thomas R Spitzer, MD 
Overview 
The success of solid organ and bone marrow transplantation (BMT) has correlated with 
improvements in selective immunosuppression. Immunosuppression decreases both the 
incidence of acute and chronic organ graft and bone marrow rejection, and a potentially 
life threatening complication of BMT known as graft-vs-host disease (GVHD). Selective 
immunosuppression targets specific pathways of immune signaling and activation, and 
minimizes the incidence of deleterious side effects. 
History 
• 1954: First successful human kidney transplant 
• 1960s: Introduction of effective immunosuppressive drugs. Steroids, ATG, 
azathioprine 
• 1968: Successful bone marrow transplants for congenital immunodeficiency 
syndromes 
• 1970s: Cyclosporine introduced 
• 1980s: OKT3, tacrolimus, mycophenolate mofetil introduced 
• In 1988 1 year renal cadaver graft survival was 76% and 1 year renal living donor 
graft survival was 89% 
▫ By 1995, graft survival rates improved to 87% and 93% respectively 
• 1980s: The addition of cyclosporine to GVHD prophylaxis regimens halved the 
incidence of severe disease and improved survival post -transplant 
• 1990s: Leflunomide, TNF antagonists, and selective mAbs introduced; additional 
mAb therapies expected in future 
Balancing Benefits and Risks of Immunosuppression 
Benefits: Immunosuppression decreases risks of both acute and chronic organ graft and 
bone marrow rejection, and GVHD 
Risks: Immunosuppression poses risk of several types of side effects to the patient: 
• Acute effects: gastrointestinal upset 
• Opportunistic infection because patient is immunocompromised: CMV, Candida, 
Pneumocystis carinii, etc. 
• Malignancies (lymphomas, skin cancer, etc.) 
• Toxicities specific to particular immunosuppressive agent: steroids, etc. Spitzer/HST-151 2 
Types of Organ Graft Rejection 
• Hyperacute: Occurs within minutes after transplant. Mediated by preformed antidonor antibodies in recipient. Involves small vessel thrombosis and graft infarction. 
• Acute: Occurs weeks after transplant. Delayed-type hypersensitivity / Cell mediated 
response of cytotoxic T lymphocytes reacting against the foreign MHC molecules of 
the graft. Histologically characterized by mononuclear infiltrate, hemorrhage, and 
edema in graft. Reversible with immunosuppressive therapy. 
• Chronic: Occurs months to years post transplant. Results from antibody mediated 
vascular damage (fibrinoid necrosis) and is irreversible. Vascular damage results in 
vascular cell wall proliferation which may occlude vessel lumen resulting in graft 
ischemia and fibrosis. Can progress insidiously despite increased immunosuppressive 
therapy. 
Graft Rejection and GVHD Following Bone Marrow Transplantation 
• Graft rejection occurs uncommonly (<1%) after conventional myeloablative bone 
marrow/stem cell transplantation, with increased incidence (1-15%) after HLAmismatched BMT/cord blood transplantation. 
• The rate of graft rejection is higher after nonmyeloablative preparative therapy for 
BMT 
• Acute GVHD, which is usually evident before day 100 post-transplant, occurs in 1/3 
of HLA matched transplants and 2/3 of HLA-mismatched transplants. 
• Chronic GVHD (>day 100) occurs in approximately ½ of transplants 
• Acute GVHD affects predominantly skin, the GI tract, and liver. Tissue injury 
involves effector cells (initiated by T-cells), particularly of the TH1 subset, and 
cytokines (e.g. TNF-alpha, interferon-gamma, and interleukin-1). 
• Chronic GVHD may affect almost any organ/tissue and often mimics a collagen 
vascular disease in its clinical presentation. 
Molecular Basis of Immune Response and Immunosuppression 
The immune response involves both humoral and cellular responses: 
Humoral: The humoral response involves recognition of foreign antigens which causes 
the differentiation of B-cells into memory cells and plasma cells. Plasma cells secrete 
antibodies into circulation. 
Cellular: Macrophages ingest and present antigen via the major histocompatibility 
(MHC) II molecule. The macrophage is a type of antigen presenting cell which binds to 
CD4 T lymphocytes cells via the MHC II – T cell receptor (TCR) interaction. CD3 is a 
necessary accessory molecule to the MHC II – TCR interaction. The interaction induces 
proliferation of the CD4 T-cell (see diagram page 4), and release of IL-2, which 
promotes activation of cytotoxic CD8 T-cells. CD8 T cells bind to MHC I molecules. 
When CD8 cells recognize an antigen presented on an MHC I molecule (which indicates 
the presenting cell is foreign, or, for example, a tumor cell or virally infected cell) the 
CD8 cell induces the death of the target. 
In the context of an MHC mismatched organ or bone marrow transplant, the MHC 
molecules of the cells of the organ (or bone marrow) graft are recognized by the host Spitzer/HST-151 3 
TCR not as self-MHC molecules, but rather in the same manner as a self-MHC plus the 
foreign peptide it is presenting. The immunologic response to the foreign MHC 
molecules is a major cause of most graft rejection. Conversely the donor immune system 
may recognize disparate MHC antigens in the host and initiate an immunologic response 
in the form of GVHD. 
MHC molecules are divided into class I and class II antigens; inheritance involves 
multiple alleles, and all loci are found on chromosome 6. Class I antigens include HLA­
A, HLA-B, and HLA-C alleles . Class II antigens include HLA-DR, HLA-DQ, and 
HLA-DP alleles. Minimization of the antigenic differences between donor and recipient, 
by matching their MHC alleles, has decreased rejection and GVHD and improved graft 
survival. Identical twins have identical MHC genes (6/6 loci), siblings have half 
similarity (3/6), and the match of unrelated persons must be determined by tissue typing. 
As most bone marrow/stem cell transplants are from HLA matched (or only minor 
mismatched) related or unrelated donors, minor histocompatibility antigens play a large 
role in eliciting an immune response (GVHD). Polymorphisms of minor histompatibility 
antigens have been identified as risk factors for GVHD in the HLA-matched setting. 
Types of Immunosuppressive Agents and Sites of Action 
The schematic on page 4 shows the molecular pathways that are activated in a helper T 
cell after it contacts an antigen presenting cell which presents an antigen on its MHC II 
molecule. Superimposed on the pathways are sites of pharmacologic intervention which 
will inhibit signaling and thus can be used as immunosuppressive agents. 
• Affect NFAT pathway: Steroids (1) 
• Affect Calcineurin: Cyclosporine (2); Tacrolimus (3) 
• Affect Cell Cycle by inhibiting DNA synthesis (4): azathioprine, MMF, leflunomide, 
cyclophosphamide 
• Anti-TCR/CD3 antibody agents (5): Polyclonal agents are ATG, ALG. OKT3 is a 
monoclonal agent. 
• Inhibit IL-2 dependent signaling: Sirolimus (6) Spitzer/HST-151 4 
(1) Steroids (corticosteroids): 
Biochemical Mechanism: Affect NF-AT mediated pathway of signal transduction, which 
results in ultimate blockade of IL-1 and IL-6 production in macrophages at the earliest 
stage of immune response.
Physiological Effects: Inhibits leukocyte proliferation, reduce leukocyte migration into 
bloodstream (by decreasing production of endothelial adhesion molecules). Steroids are 
non-specific and broad spectrum anti-inflammatory agents used in a large number of 
medical conditions. 
Side Effects: Cushing’s Syndrome [hypertension, hyperglycemia, insulin resistance, 
weight gain, moon facies, osteoporosis, impaired wound healing, ulcers], hyperlipidemia, 
adrenal suppression which may result in crisis if withdrawn abruptly
(2) Cyclosporine 
Biochemical Mechanism: Cyclosporine complexes with immunophilin protein in T cell. 
The complex blocks the phosphatase calcineurin. Without calcineurin activity, NF-AT is 
not dephosphorylated, is not translocated to the nucleus, and cannot activate transcription. 
Physiological Effects: Transcription of cytokines, including IL-2, is blunted. 
Consequently, T cell proliferation is inhibited, secretion of gamma interferon declines, 
and macrophage activation is limited. 
Side Effects: 3 N’s and 7 H’s 
Antigen presenting cell
Helper T cell 
Peptide +
MHC-II class
Activated 
TCR/CD3 
ZAP70
PLCγ1
IP3 
Ca2
+
Calcineurin
Activation Inhibition
FKBP12
DAG
B7 
CD28 
PKC
NF-AT c/p NF-AT c/p
P P P 
Nucleus 
Cell Cycle
Ras/GAP? 
Raf/MEK? 
MAPK 
Jun 
Jun Fos Fos 
NF-AT c/p
NF-AT CD28RE
CD28RC
IL-2 
(3)
(5)
(2)
(1)
(4)
(6)Spitzer/HST-151 5 
Nephrotoxicity (preventable with mannitol diuresis; chronic cyclosporine nephrotoxicity 
may produce irreversible interstitial fibrosis), Neurotoxicity (tremor, headache, tinnitus), 
Neoplasms (lymphoproliferative malignancy); 
Hypertension, Hyperkalemia, Hepatotoxicity, Hirsutism, Hypertrophy of gingiva, 
Hyperglycemia, Hyperlipidemia 
(3) Tacrolimus (similar to cyclosporine) 
Biochemical Mechanism: Binds to FK506 Binding Protein (FKBP). The TacrolimusFKBP complex inhibits calcineurin. The mechanism is therefore the same as that of 
cyclosporine. 
Physiological Effects: 10-100 times more potent than cyclosporine, but similar 
mechanism: decreased production of IL-2 
Side Effects: Similar to cyclosporine. Do not use with cyclosporine! 
(4) Cell Cycle Inhibitors 
Azathioprine: Azathioprine is metabolized in vivo to 6-mercaptopurine (6MP). 
6MP is a purine anti-metabolite that prevents DNA and RNA synthesis which 
inhibits proliferation of lymphocytes. Side effects include pancytopenias, 
gastrointestinal symptoms, and hepatic dysfunction (hepatitis). 
Mycophenolate mofetil (MMF): MMF is a prodrug of mycophenolic acid 
(MPA), which is an inhibitor of inosine monophosphate dehydrogenase 
(IMPDH). Inhibition of IMPDH limits production of guanosine nucleotides 
required for nucleic acid synthesis, and thus exerts a potent, selective cytostatic 
effect on B- and T- lymphocytes (decreased antibody production and generation 
of cytotoxic T-cells). Side effects include pancytopenias, infections and 
malignancies, and gastrointestinal symptoms. 
Leflunomide: Leflunomide inhibits dihydroorotate dehydrogenase (an enzyme 
involved in de novo pyrimidine synthesis); as a result, nucleic acid synthesis and 
lymphocyte proliferation are inhibited. Side effects include pancytopenias, 
hepatotoxicity, risk of lymphoproliferative disorders, and rare cases of StevensJohnson syndrome and toxic epidermal necrolysis. 
Cyclophosphamide: Cyclophosphamide is an extremely potent alkylating agent 
which destroys proliferating lymphoid cells. Cyclophosphamide causes 
pancytopenias, hemorrhagic cystitis, alopecia, and infertility. 
(5) Anti-TCR/CD3 antibody agents: 
anti-lymphocyte globulin (ALG) and anti-thymocyte globulin (ATG) both 
inactivate peripheral lymphocytes and impair cellular immunity. These antibodies 
are used for induction of immunosuppression, treating initial rejection, and 
treating steroid resistant rejection. Side effects include anaphylactic response 
(because these antibodies are foreign proteins), serum sickness, antigen-antibody Spitzer/HST-151 6 
induced glomerulonephritis, reactivation of latent viral infections, post transplant 
lymphoproliferative disease, and development of human anti(mouse) antibodies. 
OKT3: OKT3 is a murine monoclonal antibody that blocks the binding of the 
TCR to antigen, thus downregulating the activity of the entire TCR/CD3 receptor 
complex. Compared to ALG and ATG, there are fewer serum proteins associated 
with OKT3 preparations than with those polyclonal antibody preparations (which 
may result in a more specific effect and fewer side effects). Side effects of OKT3 
include fever, myalgias, arthralgias, CNS symptoms, GI irritation, and B-cell 
lymphoproliferative disorders. 
(6) Sirolimus (rapamycin, a macrolide antbiotic) 
Biochemical Mechanism: Inhibits IL-2 mediated signaling by inhibiting Target of 
Rapamycin (TOR), an enzyme active in IL-2 cascades in proliferating lymphocytes.
Physiological Effects: Cell cycle progression from G1 to S is blocked; T- cell and Bcell proliferation is limited, and B-cell antibody production is inhibited. 
Side Effects: Hyperlipidemia, Hypertension, Hypokalemia, Pancytopenias, decreased 
GFR / increased Serum Creatinine, metallic taste in mouth 
Newer agents: 
Anti-TNF agents include etanercept and infliximab (see Dr. Weinblatt’s lecture). 
Etanercept is a form of soluble TNF receptor. Infliximab is a chimeric IgG1 monoclonal 
with a human Fc and murine Fab. By limiting TNF activity, the generation of proinflammatory cytokines IL-1 and IL-6 are diminished. In addition, anakinra is 
recombinant version of the human IL-1 receptor antagonist that inhibits IL-1 by blocking 
its receptor. Soluble IL-1 receptor antagonists are being developed. 
Daclizumab is a humanized monoclonal murine IgG1 antibody that binds to a subunit of 
the IL-2 (CD25) receptor on the surface of activated lymphocytes. Daclizumab thereby 
functions as an IL-2 inhibitor. Side effects include hypersensitivity, cellulitis, and wound 
infection. 
Basiliximab is a chimeric murine/human monoclonal IgG1 antibody that blocks the alpha 
chain of the IL-2 (CD25) receptor on the surface of activated T-cell lymphocytes. 
Basiliximab is indicated for the prophylaxis of acute organ rejection in renal 
transplantation. Side effects include hypersensitivity and gastrointestinal disorders. 
ALG/ATG can deplete the lymphocyte population. Since daclizumab and basiliximab 
preferentially affect activated T cells, they are less apt to cause lymphocyte depletion. 
Relationship Between Immunosuppressive and Cancer Chemotherapy. 
Many cytotoxic drugs are used for both immunotherapy and cancer chemotherapy, but 
the therapeutic goals are tied to important differences in the cellular targets. Spitzer/HST-151 7 
1. Cancer cells undergo largely unregulated, asynchronous proliferation, while immune 
cells proliferate in a burst of activity when antigen (i.e. transplant) is presented. This 
means immunosuppressant therapy can be timed for maximal effect on the smallest 
population of immune cells. 
2. An antigen stimulates proliferation by specific clones of precursor cells, so a 
cytotoxic drug will have greatly enhanced effects on those clones (i.e. the drug will be 
relatively selective for rapidly dividing cells). In cancer chemotherapy, selectivity of 
cell cycle active drugs depends upon the innate growth characteristics of the tumor 
relative to normal tissue (see Dr. Kufe’s lecture) and is much harder to achieve. 
3. Immunosuppressants are usually given in low, continuous dose regimens in order to 
maintain suppression of cellular and inflammatory responses to a persistent antigenic 
stimulus. In cancer chemotherapy high-dose pulse administration is more common 
because it allows for recovery of immune function and re-growth of normal cell 
populations.